2022-09-24

Don't Use 5200 On Your Boat

This is going to be a rant about 3M Marine Adhesive Sealant 5200 and why you shouldn't use it on your boat. If you are not a boat builder, you have no reason to use it. The problem is that 5200 creates a permanent bond between two surfaces. There is that word "permanent". What, exactly, is permanent on a boat? Is a port-light permanent? Or a winch? How about combing? A stanchion? A bow roller? None of these are permanent. All of them will need to be serviced and replaced at some point. It might be 10 years, or it might be 20. If you use 5200, you, or the person who eventually owns your boat, will swear at that idiot who used 5200.

Okay, there are a few reasons to use 5200. If you are putting a new thru-hull below the waterline, that might be a reason. I think we used 5200 to fasten down the mast step on our Catalina 22 that was loose because that has a seriously long lever trying to pry it up from the deck. But almost anything that you think you should 5200 for could also be done with 4200 or even 4000.

Some people will use debonding agents, or have a scheme with a guitar E string for getting 5200 separated. But why do that when you could have used 4200.

Captain Boomies did a cool demo on why 5200 is the wrong product for anything you can think of on a boat. When you think of something that you might want to use 5200 on, ask yourself "can I use 4200 or even 4000 for that thing".

2022-07-25

Installing the Raspberry Pi and Using Saillogger

A new addition to our boat is the ability to log all of our travels. To do so, we added a Raspberry Pi powered by the boat's 12V system, connected to the NMEA 2000 backbone, and running a program called Saillogger. See our article on boat networking.

We started by buying a Raspberry Pi. This is a single-board small computer. It has most of the functionality of a large desktop on a tiny board. The specs: 1.5 GHz 64-bit quad core ARM Cortex-A72 processor, on-board 802.11ac Wi-Fi, Bluetooth 5, full gigabit Ethernet (throughput not limited), two USB 2.0 ports, two USB 3.0 ports, 8 GB of RAM, and dual-monitor support via a pair of micro HDMI (HDMI Type D) ports for up to 4K resolution. It runs a version of Linux.

Raspberry Pi 4 B

The Raspberry Pi then has added the PICAN-M hat board. This plugs into it and provides NMEA 2000 and NMEA 0183 connections, as well as providing power from the NMEA 2000 connection. It takes in 12V and steps it down to 5V.

PICAN-M hat board that plugs into the Pi

This entire setup is then enclosed into a nifty little case. It is about the same size and somewhat thicker than a pack of playing cards.

Case for the Pi, plus the PICAN-M

You can test the whole setup by using a micro HDMI cable, monitor, USB keyboard, USB mouse, and either a wired or wireless Ethernet connection. The Pi will need a micro SD card. If you want to power the board at home for testing purposes, you will need a 120V to 12V converter to power the NMEA 2000 backbone. You may also need a USB adapter for your computer to transfer the operating system onto the card. We did all our initial setup at home, then moved to the boat where we remotely log in using a laptop via WiFi with both devices connected to a phone hotspot.

Our setup required that we pull a NMEA 2000 backbone cable from the "garage" lazerette where our existing backbone was located to the panel to the right of where the AC/DC distribution is located in the cabin of the Catalina 320. The boat's existing cables feed above and behind the cabinets in the galley. We unscrewed the wood panel on the rightmost cabinet, then easily used an electrical fish wire to pull it from the garage. (Make sure to disconnect from shore power before doing this as there is live AC back there.) This is then fed down behind the AC/DC panel. Power is provided by the 12V on the NMEA 2000. We already have a Garmin 17X GPS antenna on the boat hooked to the backbone to feed GPS info to the chart plotter. We put a "T" on the backbone and installed the terminator. Then we attached a drop cable to the PICAN-M NMEA 2000 socket. This kit will provide all the basic NMEA 2000 hardware.

We installed the Debian and SignalK software onto the Pi. We found this page provided really excellent instructions on the install. If you are not familiar with Linux, you may need a friend to help you. We then installed Saillogger.

Sailogger is a program written by a friend of ours. It consists of two parts: a program installed on the Raspberry Pi through SignalK and a web site to which it uploads the information. It automatically records every time you leave a marina and where you have gone, pulling the info from the GPS (and other devices) on the NMEA 2000 network. The next time the Pi gets an internet connection either through a marina wifi or a phone hotspot, it uploads it to the Saillogger web site. There is very little configuration necessary and virtually no information that needs to be added to the logs. You don't need to remember to start something or end it...it is all automatic as long as the NMEA 2000 backbone is powered.

After installing it, we went out for a day sail on Lake Washington.

One image from the Sailogger upload

Detail of performing Man-Overboard drills

2022-07-19

Cutting Board for Stove Top

We found a perfect cutting board to go onto the stove top of the Seaward Hillerange Model 2172 stove that came with our 1994 Catalina 320. It is a Bisetti Walnut cutting board. If the front bracket wasn't on the stove top, this would drop right in. However, we needed to pry the Bisetti logo off the front (it is a friction fit into two holes, so comes right off), then sand it down where the bracket and screws on the side goes. Then we applied some food grade mineral oil. It is a beautiful addition to the galley. The board has two sides, one with a groove, and either side can be up.

To hold the board perfectly level, we added two brackets to the lower screw on each side of the front fiddle. These are Everbilt 547 475 one inch stainless steel corner brackets. We lightly filed the corner so it wasn't knife sharp.

Cutting board
Corner that had to be sanded down
L Bracket to hold up edge

2022-07-15

ASA Certification on a Bavaria 41

Most places that you charter a boat, you need to get a certification to show that you are qualified. The two organizations that provide the the most widely recognized certification organizations in the United States are US Sailing and American Sailing Association (ASA). Our plan was to get our certifications so we could fly somewhere else, such as the Caribbean, and charter a boat there.

Just before Covid hit, we were on our way to getting certifications with US Sailing, having completed our Basic Keelboat certification. Covid put a hold on completing the certifications. When we decided to upgrade our own boat, we were initially looking at larger boats, but we chose to go somewhat smaller at 32 feet to leave budget to charter boats elsewhere (and budget for upgrades, as well). As we revisited certifications this year, we found an ASA course that met our needs. We booked a week-long trip through San Juan Sailing that covered ASA 101 Basic Keelboat Sailing, ASA 103 Basic Coastal Cruising, and ASA 104 Bareboat Cruising. This allows us to charter monohull boats up to 45 feet anywhere in the world.

San Juan Sailing has a fleet of about 60 boats mostly sailing out of Bellingham, Washington. We got booked onto a three-cabin, two head, Bavaria 41, Fresh Aire. The cruise had five crew: Sandi and Greg, Mark and Jessica, and the instructor, Bob. Bob has been sailing for 30 years and knows his stuff. Mark and Jessica have been power boaters on lakes and rivers, but are new to sailing.

The Bavaria 41, Fresh Air Mediterranean docked at Stuart Island.
The course ran from Saturday, July 9 to Friday, July 15, 2022. We checked in by 11 a.m. and brought our stuff down to the boat. The first test was finding all of the safety equipment on the boat. We drew straws for cabins, and got the starboard aft cabin. This cabin has the feet at the aft of the boat, which turns out requires more gymnastics than the aft cabin on the Catalina 320 that has the feet pointed at the port side.
San Juan Islands
(by Pfly, CC BY-SA 3.0)

Saturday, July 9: We got lunch ashore, then prepared to leave dock. Our first stop was Sucia Island, on the north side of the San Juan Islands. We left the marina in Bellingham and raised sail, headed north of Lummi Island. At Sucia, we tied up to a linear mooring system in Echo Bay and spent the night.

Sunday, July 10: We sailed to Stuart Island and Mediterranean docked. We hiked to the T-shirt place.

Monday, July 11: In the morning, we did docking training against the line linear docks at Stuart. We sailed to Roche Harbor and docked at the marina.

Tuesday, July 12: We sailed all the way around the south end of San Juan Island, up the east side of Shaw Island, and anchored in Blind Bay. The seas in Harro Strait were four feet. Winds in San Juan Channel were 29 kts sustained, gusting to 32 kts. Sailed very reefed in using the furling mainsail and genoa.

Wednesday, July 13: We sailed to Rosario Resort on Orcas Island and docked at the marina.

Thursday, July 14: We sailed back to Bellingham and docked at the marina. We refueled and pumped out, performing docking training.

Friday, July 15: We did some docking practice in the marina in the morning.

All in all, a successful week. We learned some new techniques and got much better at sail trim. We got a lot of docking practice in. We did lots of man-overboard drills. These drills are not just good for emergencies, but practice in handling the boat.

Sandi at the wheel

2022-06-15

Boat Networking

This is a brain dump of what I've figured out about boat networks.

There are devices on a boat that need to talk to each other, needing protocols and physical connections. This is on a boat which is a physically demanding harsh environment. There is little space, frequently not easy wiring runs, sharp corners (both radius and cutting), and salt water and salty air. They are making some wireless devices now, but I don't trust them to provide a reliable connection in wireless saturated areas (and near military bases), and you still frequently have to get power there anyway so you still need wires.

There are some industry standards:

On our boat, we have to deal with another proprietary physical connection/protocol called Raymarine SeaTalk 1.

The NMEA 0183 physical connection is essentially a RS422 serial connection (an old computer standard that was used to connect computers to modems, among other devices). It is point-to-point...two devices that want to talk to each other need two wires running between them, but one transmitter can have several listeners. While this standard is obsolete, it is still used in many older devices, and newer devices sometimes still support it for backwards compatibility. On Fantasia, we used NMEA 0183 to feed GPS data from the chart plotter to the VHF radio. If you hit the DSC (Digital Selective Calling) panic button on the VHF radio, it would transmit the GPS data to the Coast Guard in a digital format, broadcasting the MMSI (a primary key number into a Coast Guard boat database) and GPS coordinates and saying "come get me". The protocol is expressed essentially in text "sentences" like $GPAAM,A,A,0.10,N,WPTNME*32. It is very low bandwidth, 4800 baud normally. You must run an extra two wires for power, so normally there are four thin wires between devices.

NMEA 2000 is essentially CAN Bus, a standard used in cars, airplanes, and manufacturing. There is a backbone cable that stretches on the boat that is terminated on each end. Various devices plug into this backbone cable, and the drop cable going to the device can be 27 feet. The protocol is 8 byte packets. Most devices produced in the last 10-20 years use this protocol. Bandwidth is 250kbs--good enough for most data, but not for radar/sonar/video. It has power up to 25 watts per device on the wire.

Example of a NMEA 2000 backbone similar to ours.

Our NMEA 2000 backbone on Achernar is literally about 1 foot long (this will be changing soon), with the drop cables running to different points. As we bought Achernar, there were three drops to the NMEA backbone: 12V power in, a Garmin 17X GPS antenna, and a Garmin 4212 chart plotter. Significantly missing is information from the West Marine 1000 AIS transceiver, which has NMEA 0183 (only) output that currently goes nowhere.

NMEA OneNet is essentially Ethernet, with a custom protocol sitting on top of IPv6. The standard took about 10 years to produce, and was published about two years ago. As near as I can tell, no manufactured devices actually use it yet. It should be able to handle radar/sonar/video. It does power with PoE (power over Ethernet), with all the strengths and limitations that has.

The wind, depth, speed over water, water temperature, and autopilot on Achernar don't use any of these to communicate to the displays at the helm...it uses a proprietary protocol called Raymarine SeaTalk 1. (This is not to be confused with SeaTalk NG or several other similarly named protocols. SeaTalk NG is a rebranded NMEA 2000 using proprietary cables.) The details of this SeaTalk 1 have been reverse engineered. You can get SeaTalk 1 devices to talk to a NMEA 2000 network by converting SeaTalk 1 to SeaTalk NG, then connecting SeaTalk NG to NMEA 2000. With this translation, we should be able to see wind, depth, speed, and water temperature on the chart plotter without having to replace all the devices.

Sometimes you want to get the info on the NMEA 2000 backbone in a format that can be interpreted by a computer. With OneNet, that would be easy, you just get a device driver for the OneNet packets, but with NMEA 2000, that's trickier. There is a device called iKommunicate that convert NMEA 2000 packets into Ethernet packets. It basically plugs into the NMEA 2000 backbone and dumps out Ethernet packets in HTTP SignalK format on an Ethernet port. (It also accepts a couple NMEA 0183 devices.)

SignalK is an open source JSON protocol for understanding NMEA 2000 data. The output from the iKommunicate device can be fed to the Ethernet input on a computer or a Raspberry Pi. There are various programs that interpret the SignalK format and produce displays of instruments and log where you have been. Another alternative is there is hat board that fits onto a Raspberry Pi unit called PICAN-M. This board performs the same task as iKommunicate, except it only works with a Raspberry Pi.

Our friend Ilker has written a Signal K logging program that's pretty nice: https://saillogger.com. I will write up our use of this program later.

Our Garmin radar uses an Ethernet cable for talking to our Garmin chart plotter. The cable is run point to point from the radar dome to the chart plotter. It uses a proprietary Garmin protocol.

2022-05-04

Opening Day Raft-Up

Tyee Yacht Club raft up. We are the third boat from the left...the small one.

Only three days after making our way down from Anacortes, we headed back out to join Tyee Yacht Club's raft-up at the Montlake Cut for Opening Day. We tied up with 13 other boats (two more joined after the photo was taken) just north of Marsh Island at the Seattle Arboretum for five days. Opening Day is the official start of Seattle's boating season. On the north side of the cut is a log boom where hundreds of boats tie up. We tied up on the south side where only the yacht clubs get to tie up. Pot luck dinners, drink, and other events happen on the boats.

It was cold and rainy most of the days, but brightened up just in time for the boat parade down the cut.

2022-04-29

The Voyage South

We began our adventure travelling south toward are new slip in Kenmore. Our slip became available on May First, so although we could be faster we decided to take advantage of our time. We headed down the west side of Whidbey Island and across the eastern end of the Strait of Juan de Fuca. This area can be extremely rough if the conditions are not good, but on this day, the weather was perfect. The water was glassy. The boat was running well.

The worst seas we saw the entire trip

We pulled into Tyee Yacht Club's virtual outstation at Port Hadlock. It's called a virtual outstation because there are no dedicated docks for the club, but they will do their best to fit you in. We got a slip on their newly refurbished dock. They have done a great job upgrading the docks. New LED lighting, new power stations, and a pump-out at every two slips. Using our club membership, the cost was free!

The next morning we headed down to Tyee West Outstation at Eagle Harbor on Bainbridge Island. We joined 20 other boats for the 75th anniversary of the club. We rafted to another boat for the night and joined the pot luck that night.

Headed through the small lock

The next morning we headed off toward our dock. We have to come in through the Hiram Chittenden locks into the Lake Washington Ship Canal. Our friends that we were tied to at the outstation were right in front of us. After getting through the locks, we had the privilege of screwing up all of Seattle traffic as we made them open four of the bridges as we move through the canal. On the 22, the only bridge we needed opened was the Fremont bridge, and even then, it's only by inches. With the 320, we need them all open as most have 45 feet of clearance, and our mast is 50 feet with the antenna.

Raising the bridges

We finally got to our dock, only to find it still occupied. We tied up in temporary space and made a few calls to the after hours number for the harbormaster. Some people eventually came out and moved the boat and we could pull into our slip for the next year. The advantage of this slip is that it is five minutes from our house, so coming down and working on the boat is easy and we can go out for evening sails easily.

The weather window was just perfect, which was really good because we were sailing on a schedule. You never want to be sailing on a schedule! The weather sucked before and it sucked after, but we had three days of sunshine and calm seas.

2022-04-25

Achernar

We have renamed our Catalina 320 to Achernar. Achernar is pronounced ay-ker-nar, with a long A sound. It's name comes from Arabic, which means End of the River. It is named for the last star in the constellation Eridanus, which is the River constallation. As a .5 magnitude star, it is the ninth brightest star in the sky. Because it is a southern star, it is currently visible only below 33°N, a little south of Los Angeles. It is a blue star, and is currently the flattest known star in the Milky Way, spinning so fast that its equatorial diameter is 35% greater than its polar diameter. Eridanus is a river of stars that heads south from near Orion's left foot. It ends at Achernar, the end of the river.

The boat name shows the stars of Eridanus, meticulously recreated in software by a program Greg wrote. The font is Decotura ICG, the same font we used for the name on Fantasia.

Achernar shows up in popular culture in several contexts. It was Jack Vance's favorite star. It showed up in many of his works, but particularly in The Dying Earth, the creature Firx came from Achernar. In the Star Trek universe, the planet Romulus, home world of the Romulans, circles Achernar. Vulcan is also in Eridanus. Our theme song is Achernar, by Carlo Whale.

2022-04-24

Dripless Shaft Seal Installation

We began our trip moving the boat from Anacortes to Kenmore. The first step, though, was to take the boat out for some upgrades. We motored from Cap Sante Marina to Skyline Marine Center on the other side of the peninsula. It's only about 4 miles on land, but about 12 nm by sea. It took us about two hours. We backed into a dock using our new docking skills, then got hauled our and placed on the hard at their DYI yard. There, Fathom Marine installed our new dripless shaft seal.

Boats of this generation come with a packing gland. This is the material that keeps water coming into the boat around the propeller shaft where it enters the boat. Except a packing gland has to let some water into the boat, because it also acts as the lubricant, keeping the shaft from overheating. This puts a constant amount of water in the bilge. This means the boat always has moisture in it, which leads to mildew and other problems if not controlled. A dripless shaft seal uses a different mechanism for lubrication, meaning that no water needs to enter the boat from the shaft. They are not terribly expensive, but there is the labor and the boat must be hauled out.

While doing our docking training, we noticed the transmission was having quite a bit of trouble going into gear. Eventually, we discovered that the idle was set too low for our Perkins engine. The correct idle was buried in the Perkins manual. When bumped up to 1000 RPM everything worked just fine. This is faster than most engines, but the transmission just does not work at a slower idle.

Adding our new boat logos

While the boat was hauled out, we took the opportunity to lubricate all of the thru-hole valves. We also removed the remaining boat name, home port, and Washington State ID number. Our boat is Coast Guard Documented now, so should no longer have those numbers on the bow. We then added the new boat name and home port.

The boat was then dropped back in the water. We took advantage of our reciprocal moorage with Flounder Bay Yacht Club to stay there at Skyline for two nights, while we got all our ducks in a row for the voyage south.